Group-aware deep feature learning for facial age estimation
نویسندگان
چکیده
In this paper, we propose a group-aware deep feature learning (GA-DFL) approach for facial age estimation. Unlike most existing methods which utilize hand-crafted descriptors for face representation, our GA-DFL method learns a discriminative feature descriptor per image directly from raw pixels for face representation under the deep convolutional neural networks framework. Motivated by the fact that age labels are chronologically correlated and the facial aging datasets are usually lack of labeled data for each person in a long range of ages, we split ordinal ages into a set of discrete groups and learn deep feature transformations across age groups to project each face pair into the new feature space, where the intra-group variances of positive face pairs from the training set are minimized and the inter-group variances of negative face pairs are maximized, simultaneously. Moreover, we employ an overlapped coupled learning method to exploit the smoothness for adjacent age groups. To further enhance the discriminative capacity of face representation, we design a multi-path CNN approach to integrate the complementary information from multi-scale perspectives. Experimental results show that our approach achieves very competitive performance compared with most stateof-the-arts on three public face aging datasets that were captured under both controlled and uncontrolled environments.
منابع مشابه
Deep Regression Forests for Age Estimation
Age estimation from facial images is typically cast as a nonlinear regression problem. The main challenge of this problem is the facial feature space w.r.t. ages is heterogeneous, due to the large variation in facial appearance across different persons of the same age and the nonstationary property of aging patterns. In this paper, we propose Deep Regression Forests (DRFs), an end-to-end model,...
متن کاملConvolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image
Convolutional neural network (CNN), one of the most commonly used deep learning methods, has been applied to various computer vision and pattern recognition tasks, and has achieved state-of-the-art performance. Most recent research work on CNN focuses on the innovations of the structure. This thesis explores both the innovation of structure and final label encoding of CNN. To evaluate the perfo...
متن کاملInterpretable Facial Relational Network Using Relational Importance
Human face analysis is an important task in computer vision. According to cognitive-psychological studies, facial dynamics could provide crucial cues for face analysis. In particular, the motion of facial local regions in facial expression is related to the motion of other facial regions. In this paper, a novel deep learning approach which exploits the relations of facial local dynamics has bee...
متن کاملDeep Age Estimation: From Classification to Ranking
Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial imagebased age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network ...
متن کاملIdentity-aware convolutional neural networks for facial expression recognition
Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 66 شماره
صفحات -
تاریخ انتشار 2017